WELCOME

Pressure Systems Installations: Significant Technical Challenges in a Difficult Commercial Climate

A Morris Chief Mechanical Engineer Coal, Gas and Renewables

University of Southampton, MENSUS Showcase, 11th October 2016

Agenda

- Regulation and Commercial Context
- Engineering Challenges
- Opportunities for Monitoring of Pressure Systems, use of Sensors....and Data

WB A: 4 x 500 MW Coal, 1969

WB B: 3 x 435 MW CCGT, 2013

Regulatory/Commercial Context

Closure of existing Coal fired plants in the UK due to various reasons:

- IED emissions regulations, Carbon Tax and CO₂ Emissions National Target,
- Cost of operating and maintaining an ageing Coal fleet with a limited commercial life ahead, especially under flexible load conditions,
- Preference for CCGT generation over Coal at lower emissions,
- Increasing Wind Generation.

Look Ahead:

- Introduction of the Capacity Market, individual Unit bid prices. Emphasises the importance of plant reliability, pressing need to be on load as requested to capture market price,
- Planned closure of all Coal generation by 2025 at latest,
- Reducing investment in operating Coal Units, run down of existing Coal stocks,
- CCGT Units operating flexibly (high Unit starts),
- Station revenue is now much lower

5 Title of Presentation © 1 January 2015 EDF Energy plc. All rights Reserved

Engineering Challenges (Understanding the behaviour of ageing materials in-service)

Coal Units

Forward Operation of ageing Units until Closure: <u>High number of annual Unit starts</u> (150/200) and relatively low operating hours (1500/2000)

CCGT Units

WB B: Unit typical operation to date: 15,000hrs and ~ 750 starts Use of relatively advanced steels (P91) in Superheat sections of the Heat Recovery Steam Generator (HRSG)

Forward Operation: Anticipate continuation of high number of Unit starts

Challenges (Similar to Coal, but noting the following)

Advanced steel (P91) is very sensitive to composition, site installation process, adverse operating conditions. P91 is difficult to inspect, assess and repair

Locations

Access to pressure system components is much restricted (by design)

Life expiry (behaviour) of relatively young materials!

Some Examples of in-service Degradation

LO

0

HO

Low Orientated

High Orientated

Orientated

edf ENERGY

outlet manifold

Clear 11

10

VI

12

How do we Currently Manage the Integrity of Pressure Systems?

4-yearly statutory inspection (2-yearly interim outage for 'monitors')

Ticket to operate obtained; only for the next 4-year period

Very limited data integration to support longer term life prediction

Data Silos

- Load

B Press

A Press

Some Opportunities for Monitoring of Pressure Systems, use of Sensors<u>and</u> <u>Data Thereafter</u>

- 1. Onload and Offload Data Interpretation and Analysis
- 2. Outage Inspection
- 3. Assisting the Operator to Manage Risk

Some Examples of Related Research to Address the Challenges

Onload and Offload Data Interpretation and Analysis

- Vast amounts of material condition data is captured during outages: By no means fully utilised to support condition assessment (Sits in Silos)
- Very traditional process: Inspect, produce report, secure ticket to run for the next 4 years
- **Opportunity:** Data fusion and analysis, use of material lifing models that directly accept/use measurements from online sensors and/or from outage inspections. Enable the operator to a) Improve operation, b) Optimise the scope of future inspections, c) Predict the change in condition...inspect.....update lifing model

Outage Inspection

- Inspections are used to 'determine the condition of the asset'; Preferable if they were
 primarily used to 'confirm the predicted condition of the asset' as part of a more
 forward looking assessment process,
- On-load measurements of defect propagation rate, with permanently installed sensors, would be of great benefit for Safety Cases on high temperature systems; allowing continued safe operation whilst repairs/replacements can be arranged.
- Site metallurgical data capture (replicas, hardness), significant cost as plant ages, interpretation with respect to life prediction could be greatly improved
- **Opportunity:** Permanently installed sensors to measure <u>damage accumulation rate</u> on key systems/components. Use of small specimen sampling techniques to assess material behaviour

Main Steam pipe weld

with thermal fatigue

Online creep damage sensor (ACPD) installed at West Burton; Ref Imperial College

EPSRC Flex-E-Plant

Assisting The Operator to Manage Risk

Opportunity	Benefit
Provide the plant operators with frequent (timely) and easy to understand information related to the condition of the plant	Enables proactive changes to plant operation to reduce the rate of damage accumulation
Improve risk assessment/reporting; ensure full use of operational/outage intelligence	Reduce operational maintenance costs, maintain safety, optimise capital spend
Provide the operator with the ability to use all the operational/outage intelligence and respond to changes in Regulation and/or Market conditions	Optimises through life cost of plant operation, ensures the plant is commercially viable

More informed Risk Management will save £M's on operational and capital costs; in these challenging times it is essential that this is pursued.

Noting that Safe Operation must be Maintained

THANK YOU

